3.1.24 \(\int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx\) [24]

Optimal. Leaf size=87 \[ -\frac {e^{3/2} \text {ArcTan}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d} \]

[Out]

-e^(3/2)*arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a/d+1/2*e^(3/2)*arctanh(1/2*(e^(1/2)+cot(d*x+c)*e^(1/2))*2^(1/2)
/(e*cot(d*x+c))^(1/2))/a/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3654, 3613, 214, 3715, 65, 211} \begin {gather*} \frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {e} \cot (c+d x)+\sqrt {e}}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}-\frac {e^{3/2} \text {ArcTan}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Cot[c + d*x])^(3/2)/(a + a*Cot[c + d*x]),x]

[Out]

-((e^(3/2)*ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]])/(a*d)) + (e^(3/2)*ArcTanh[(Sqrt[e] + Sqrt[e]*Cot[c + d*x])/(S
qrt[2]*Sqrt[e*Cot[c + d*x]])])/(Sqrt[2]*a*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 3654

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1
/(c^2 + d^2), Int[Simp[a^2*c - b^2*c + 2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e +
 f*x]], x], x] + Dist[(b*c - a*d)^2/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan
[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2
, 0]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin {align*} \int \frac {(e \cot (c+d x))^{3/2}}{a+a \cot (c+d x)} \, dx &=\frac {\int \frac {-a e^2+a e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{2 a^2}+\frac {1}{2} e^2 \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx\\ &=\frac {e^2 \text {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-a x)} \, dx,x,-\cot (c+d x)\right )}{2 d}-\frac {e^4 \text {Subst}\left (\int \frac {1}{2 a^2 e^4-e x^2} \, dx,x,\frac {-a e^2-a e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}\right )}{d}\\ &=\frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}-\frac {e \text {Subst}\left (\int \frac {1}{a+\frac {a x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}\\ &=-\frac {e^{3/2} \tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 3.78, size = 107, normalized size = 1.23 \begin {gather*} -\frac {(e \cot (c+d x))^{3/2} \left (4 \text {ArcTan}\left (\sqrt {\cot (c+d x)}\right )+\sqrt {2} \left (\log \left (-1+\sqrt {2} \sqrt {\cot (c+d x)}-\cot (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )\right )}{4 a d \cot ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Cot[c + d*x])^(3/2)/(a + a*Cot[c + d*x]),x]

[Out]

-1/4*((e*Cot[c + d*x])^(3/2)*(4*ArcTan[Sqrt[Cot[c + d*x]]] + Sqrt[2]*(Log[-1 + Sqrt[2]*Sqrt[Cot[c + d*x]] - Co
t[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])))/(a*d*Cot[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(297\) vs. \(2(71)=142\).
time = 0.52, size = 298, normalized size = 3.43

method result size
derivativedivides \(-\frac {2 e^{2} \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 \sqrt {e}}\right )}{d a}\) \(298\)
default \(-\frac {2 e^{2} \left (-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{16 \left (e^{2}\right )^{\frac {1}{4}}}+\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 \sqrt {e}}\right )}{d a}\) \(298\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/d/a*e^2*(-1/16/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)
)/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x
+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/16/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c
)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)
+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c
))^(1/2)+1))+1/2/e^(1/2)*arctan((e*cot(d*x+c))^(1/2)/e^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.56, size = 83, normalized size = 0.95 \begin {gather*} \frac {{\left (\frac {\sqrt {2} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a} - \frac {4 \, \arctan \left (\frac {1}{\sqrt {\tan \left (d x + c\right )}}\right )}{a}\right )} e^{\frac {3}{2}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

1/4*((sqrt(2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*log(-sqrt(2)/sqrt(tan(d*x + c)) +
 1/tan(d*x + c) + 1))/a - 4*arctan(1/sqrt(tan(d*x + c)))/a)*e^(3/2)/d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 142 vs. \(2 (61) = 122\).
time = 2.25, size = 142, normalized size = 1.63 \begin {gather*} \frac {\sqrt {2} e^{\frac {3}{2}} \log \left (-{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) - \sqrt {2}\right )} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} + 2 \, \sin \left (2 \, d x + 2 \, c\right ) + 1\right ) + 4 \, \arctan \left (\frac {\sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right )}{\cos \left (2 \, d x + 2 \, c\right ) + 1}\right ) e^{\frac {3}{2}}}{4 \, a d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*e^(3/2)*log(-(sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*sin(2*d*x + 2*c) - sqrt(2))*sqrt((cos(2*d*x + 2*
c) + 1)/sin(2*d*x + 2*c)) + 2*sin(2*d*x + 2*c) + 1) + 4*arctan(sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))*s
in(2*d*x + 2*c)/(cos(2*d*x + 2*c) + 1))*e^(3/2))/(a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\cot {\left (c + d x \right )} + 1}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(3/2)/(a+a*cot(d*x+c)),x)

[Out]

Integral((e*cot(c + d*x))**(3/2)/(cot(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*cot(d*x + c))^(3/2)/(a*cot(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [B]
time = 0.49, size = 79, normalized size = 0.91 \begin {gather*} \frac {\sqrt {2}\,e^{3/2}\,\mathrm {atanh}\left (\frac {12\,\sqrt {2}\,e^{25/2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{12\,e^{13}\,\mathrm {cot}\left (c+d\,x\right )+12\,e^{13}}\right )}{2\,a\,d}-\frac {e^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{a\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(3/2)/(a + a*cot(c + d*x)),x)

[Out]

(2^(1/2)*e^(3/2)*atanh((12*2^(1/2)*e^(25/2)*(e*cot(c + d*x))^(1/2))/(12*e^13*cot(c + d*x) + 12*e^13)))/(2*a*d)
 - (e^(3/2)*atan((e*cot(c + d*x))^(1/2)/e^(1/2)))/(a*d)

________________________________________________________________________________________